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Abstract
We propose a simulation–precision control algorithm that can be used with a family of derivative free optimization algorithms to solve

optimization problems in which the cost function is defined through the solutions of a coupled system of differential algebraic equations

(DAEs). Our optimization algorithms use coarse precision approximations to the solutions of the DAE system in the early iterations and

progressively increase the precision as the optimization approaches a solution. Such schemes often yield a significant reduction in

computation time.

We assume that the cost function is smooth but that it can only be approximated numerically by approximating cost functions that are

discontinuous in the design parameters. We show that this situation is typical for many building energy optimization problems. We present a

new building energy and daylighting simulation program, which constructs approximations to the cost function that converge uniformly on

bounded sets to a smooth function as precision is increased. We prove that for our simulation program, our optimization algorithms construct

sequences of iterates with stationary accumulation points. We present numerical experiments in which we minimize the annual energy

consumption of an office building for lighting, cooling and heating. In these examples, our precision control algorithm reduces the

computation time up to a factor of four.

# 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Whole-building energy analysis programs, such as

EnergyPlus [7], TRNSYS [14] and DOE-2 [30], use

adaptive solvers such as Newton solvers or variable time

step integration routines to compute an approximate

numerical solution to a complex system of equations

including implicit equations, ordinary differential equations

and partial differential equations. In adaptive solvers, a

change in input data can cause a change in the sequence of
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solver iterations or a change in the integration mesh, which

causes the approximate numerical solution to be discontin-

uous in the design parameters. Consequently, if in solving an

optimization problem, a smooth cost function is evaluated

by such programs, it becomes replaced by a numerical

approximation that is discontinuous in the design parameter.

It is generally accepted in the simulation-based optimization

community that if programs with adaptive solvers are used in

conjunction with optimization algorithms that require the

cost function to be smooth, one needs to compute high

precision cost function approximations to prevent the

optimization algorithm to fail at a discontinuity. In fact,

examples of such failures in building design and control

optimization are reported in [28,29].

However, there is usually no benefit in using high

precision approximations to the cost function in the early

iterations, while far from a minimum, and computation time
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Nomenclature

a 2 A a is an element of A

A � B A is a subset of B

A \ B intersection of sets A and B

card(�) cardinality of a set

ei unit vector along the ith coordinate direction

f(�) cost function

f*(�,�) approximating cost function

n dimension of the independent parameter

N {0, 1, 2, . . .}
q dimension of the precision parameter of the

DAE solver

Q set of rational numbers

Qþ fq2Qjq> 0g
R set of real numbers

R
q
þ fx2Rqjxi > 0; i2f1; . . . ; qgg
b s c maxfk2Njk � sg
t time

x independent parameter

Z {. . ., �2, �1, 0, 1, 2, . . .}
Dk mesh size parameter at kth iteration

, equal by definition
may in fact become prohibitively expensive if high precision

approximations to the cost function are used in all iterations.

Thus, we propose a simulation–precision control algorithm

that can be used in conjunction with a family of derivative-

free optimization algorithms to optimize cost functions of

the form f : Rn!R that are defined through the solutions of

computationally expensive coupled systems of differential

algebraic equations (DAEs). Our optimization algorithms

use coarse precision solutions in the early iterations and

include a test that progressively increases the precision of

the approximating cost function as the optimization

approaches a stationary point.

We assume that for obtaining numerical approximations

to the solutions of the DAE system, adaptive solvers are used

that iterate until a convergence criterion is met. In this

situation, the computer code defines approximating cost

functions f*(e, �), where e2R
q
þ denotes the precision

parameters of the DAE solver.

In [22,27], the authors present a simulation–precision

control algorithm that can be used in conjunction with

Generalized Pattern Search (GPS) algorithms [3] to control e
during the optimization. GPS algorithms are derivative free

optimization algorithms. Examples of GPS algorithms are

the Coordinate Search algorithm [20] or the Hooke–Jeeves

algorithm [12].

In this paper, we present a new precision control

algorithm for GPS algorithms, which yields faster con-

vergence for our building energy optimization problems

than the precision control scheme in [22,27]. Under the
assumption that f*(e, �) converges to f(�) uniformly on

bounded sets, as jjejj ! 0, with f(�) being a continuously

differentiable function, we prove that our adaptive precision

GPS algorithms construct sequences of iterates with

stationary accumulation points. For a class of building

energy optimization problems, we prove existence and

uniqueness of a smooth solution of the DAE system, and

hence existence, uniqueness and smoothness of f(�).
However, since many existing building simulation programs

are built on models that do not satisfy the standard

requirements used to establish existence and uniqueness of a

smooth solution of the DAE system, we developed the

BuildOpt program [26]. BuildOpt is a new detailed thermal

building and daylighting simulation program that is built on

models that satisfy the smoothness assumptions that are

required to prove existence and uniqueness of a smooth

solution of the DAE system. We present BuildOpt and use it

in the numerical experiments in which we minimize the

annual source energy consumption of an office building. Our

adaptive precision control algorithm reduces the computa-

tion time up to a factor of four compared to the standard

Hooke–Jeeves algorithm.
2. Nomenclature

2.1. Conventions

(1) Vectors are always column vectors, and their elements
are denoted by superscripts.
(2) E
lements of a set or a sequence are denoted by

subscripts.
(3) f
(�) denotes a function where (�) stands for the

undesignated variables. f(x) denotes the value of f(�)
for the argument x. f: A!B indicates that the domain of

f(�) is in the space A, and that the image of f(�) is in the

space B.
(4) W
e say that a function f : Rn!R is once (Lipschitz)

continuously differentiable if f(�) is defined on Rn, and if

f(�) has a (Lipschitz) continuous derivative on Rn.
(5) I
f X is a set, we denote by @X its boundary.
(6) T
he inner product in Rn is denoted by h�,�i and for

x; y2Rn defined by x; yh i ,
Pn

i¼1xiyi. The norm in Rn is

denoted by jj�jj and is defined by kxk , x; xh i1=2.
(7) I
f a subsequence fxigi2K�fxig1i¼0 converges to some

point x, we write xi!Kx.
3. Minimization problem

We will consider minimization problems of the form

min
x2X

f ðxÞ; (1a)

n i i i
X , fx2R jl � x � u ; i2f1; . . . ; ngg; (1b)
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with �1 � li < ui �1 for i 2 {1, . . ., n}. We assume that

the cost function is once continuously differentiable and

defined as:

f ðxÞ , Fðzðx; 1ÞÞ; (2)

where F : Rm!R is once continuously differentiable and

zðx; 1Þ 2Rm is the solution of a semi-explicit nonlinear DAE

system with index one [4] of the form:

żðx; tÞ ¼ hðx; zðx; tÞ;mÞ; t2 ½0; 1�; (3a)

zðx; 0Þ ¼ z0ðxÞ; (3b)

gðx; zðx; tÞ;mÞ ¼ 0; (3c)

where h : Rn � Rm � Rl!Rm; z0 : Rn!Rm and

g : Rn � Rm � Rl!Rl. The notation żðx; tÞ denotes differ-

entiation with respect to time.

Eq. (3a) describes a DAE system that is typically solved

during a thermal building simulation after the spatial domain

of wall, floor and ceiling constructions has been discretized

in a finite number of nodal points. For example, the

components of the vector z(�, �) can be the room air

temperature, the solid temperature at the nodal points, and

the building energy consumption, and g(�, �, �) can be a

system of nonlinear equations that is used to describe the

temperature of elements with negligible thermal capacity

(e.g., window glass).

To establish existence, uniqueness and differentiability

of the solution z(�, 1) of (3), we will make the following

assumptions.

Assumption 3.1. With g : Rn � Rm � Rl!Rl as in (3c),

we assume that g(�, �, �) is once continuously differentiable,

and we assume that for all x2Rn and for all zð�; �Þ 2Rm, Eq.

(3c) has a unique solution m�ðx; zÞ 2Rl and that the matrix

with partial derivatives @gðx; zðx; tÞ;m�ðx; zÞÞ=@m2Rl�l is

non-singular.

By use of the Implicit Function Theorem [21], one can

show that Assumption 3.1 implies that the solution of (3c),

i.e., the m*(x, z) that satisfies g(x, z(x, t), m*(x, z)) = 0, is

unique and once continuously differentiable. Therefore, to

establish existence, uniqueness and differentiability of

z(�, 1), we can reduce the DAE system (3) to an ordinary

differential equation, which will allow us to use standard

results from the theory of ordinary differential equations.

To do so, we define for x2Rn, for t 2 [0, 1] and for

zðx; tÞ 2Rm the function

h̃ðx; zðx; tÞÞ , hðx; zðx; tÞ;m�ðx; zÞÞ; (4)

and write the DAE system (3) in the form

żðx; tÞ ¼ h̃ðx; zðx; tÞÞ; t2 ½0; 1�; (5a)

zðx; 0Þ ¼ z0ðxÞ: (5b)
We will use the notation h̃xðx; zðx; tÞÞ and h̃zðx; zðx; tÞÞ for

the partial derivatives ð@=@xÞðh̃ðx; zðx; tÞÞÞ and ð@=@zÞ
ðh̃ðx; zðx; tÞÞÞ, respectively. We will make the following

assumption.

Assumption 3.2. With h̃ : Rn � Rm!Rm and z0 :
Rn!Rm as in (5), we assume that
(1) th
e initial condition z0(�) is continuously differentiable;

and
(2) th
ere exists a constant K 2 [1, 1) such that for all

x0; x00 2Rn and for all z0; z00 2Rm, the following relations

hold:
kh̃ðx0; z0Þ � h̃ðx00; z00Þk � Kðkx0 � x00k þ kz0 � z00kÞ; (6a)

kh̃xðx0; z0Þ � h̃xðx00; z00Þk � Kðkx0 � x00k þ kz0 � z00kÞ; (6b)

and

kh̃zðx0; z0Þ � h̃zðx00; z00Þk � Kðkx0 � x00k þ kz0 � z00kÞ: (6c)

Now we can use the following theorem, which is a

special case of Corollary 5.6.9 in Polak [21], to show that

f ð�Þ , Fðzð�; 1ÞÞ is once continuously differentiable.

Theorem 3.3. Suppose that F : Rm!R is once continu-

ously differentiable on bounded sets, that Assumptions 3.1

and 3.2 are satisfied and that f : Rn!R is defined by

f ðxÞ , Fðzðx; 1ÞÞ. Then, f(�) is once continuously differenti-

able on bounded sets.

We assume that z(x,t) cannot be evaluated exactly, but that

it can be approximated by functions z�ðe; x; tÞ; with z� :
R

q
þ � Rn � R!Rm, where e2R

q
þ is a vector that contains

the precision parameters of the DAE solvers. For

example, given a design parameter x2Rn, z*(e, x, t) is the

numerical approximation to the solution z(x, t) of (3) as

computed by a simulation program with solver precision

parameters e. Thus, for e2R
q
þ and x2Rn we define

approximating cost functions f �ðe; xÞ , Fðz�ðe; x; 1ÞÞ, which

are, in general, discontinuous in x due to the adaptive DAE

solvers.

It is generally accepted in the simulation-based optimiza-

tion community that, if problem (1) is solved with an

optimization algorithm that requires the cost function to be

smooth, one needs to compute high-precision approximate

solutions z*(e, x, 1). However, for many building design

optimization problems, computing a high-precision

approximate solution z*(e, x, 1) is computationally expensive.

Thus, in our optimization algorithms we use coarse precision

approximate solutions z*(e, x, 1) in the early iterations, and

progressively decrease the approximation error jf*(e,
x) � f(x)j as the optimization approaches a solution. We

will assume that the cost function f(�) and its approximating

cost functions ff �ðe; �Þge2R
q
þ

have the following properties:
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Assumption 3.4.
(1) T
2

here exists an error bound function ’ : R
q
þ!Rþ such

that for any bounded set S�Rn, there exist an eS 2R
q
þ

and a scalar KS 2 (0,1) such that for all x 2 S and for

all e2R
q
þ, with e � eS,2

f �ðe; xÞ � f ðxÞj j � KS’ðeÞ: (7)

Furthermore,

lim
kek! 0

’ðeÞ ¼ 0: (8)

The function f : Rn!R is once continuously differenti-
(2)
able.
Note that we allow the functions ff �ðe; �Þge2R
q
þ

to be dis-

continuous, and that we need to know the function ’(�), but

not the constant KS.

Assumption 3.4 ensures that the approximation error can

be reduced to an arbitrarily small value. We will also need to

make an assumption on the level sets of the family of

approximating cost functions. To do so, we first define the

notion of a level set.

Definition 3.5. (Level set) Given a function f : Rn!R and

an a2R, such that a> infx2Rn f ðxÞ, we will say that the set

Laðf Þ�Rn, defined as:

Laðf Þ , fx2Rnjf ðxÞ � ag; (9)

is a level set of f(�), parametrized by a.

Assumption 3.6. (Compactness of level sets) Let

ff �ðe; �Þge2R
q
þ

be as in Assumption 3.4, let x0 2Rn be the

initial iterate, and let e0 2R
q
þ be the initial solver precision

parameter. We assume that there exists a compact set C�Rn

such that for all e2R
q
þ, with e � e0,

Lf �ðe0;x0Þðf
�ðe; �ÞÞ�C: (10)

4. Computation of approximate solutions of

the DAE system

4.1. Existing building simulation programs

Many of today’s commercially available building

simulation programs, such as EnergyPlus, TRNSYS and

DOE-2, are based on models that do not satisfy Assumptions

3.1 and 3.2, and the approximating cost functions f*(e, �),
defined by these programs, do not satisfy Assumption 3.4.

Numerical experiments [28,29] have shown that cost

functions, computed by EnergyPlus, have discontinuities

in the order of 2% of the cost function value, which caused
For e2R
q
þ, by e � es, we mean that 0< ei � ei

S, for all i2f1; . . . ; qg.
various optimization algorithms to fail, sometimes far from a

minimum. Furthermore, in many of today’s commercially

available building simulation programs, the numerical

solvers are implemented in a way that makes it impossible

to establish error bounds as required by Assumption 3.4. For

example, to simulate a thermal zone with daylighting control

and purchased heating and cooling, EnergyPlus uses at least

10 precision parameters, most of which are fixed at compile

time.

Firstly, in EnergyPlus and in DOE-2, if the window area

changes from one iteration to the next, then these programs

may use a different window discretization to approximate

the daylight illuminance of the window aperture and hence

h̃ð�; �Þ is discontinuous. Secondly, many building simulation

programs compute the convective heat flux between a wall

and the room air using the function

qðx; tÞ ¼ cQðx; tÞ Qðx; tÞj j1=3; (11)

with Qðx; tÞ , Twðx; tÞ � Taðx; tÞ, where c > 0 is a constant,

Twðx; tÞ 2R is the wall surface temperature, and Taðx; tÞ 2R

is the room air temperature. For ease of explanation, suppose

that Tw(x, t) > 0 and Ta(x, t) = 0. Then, q(x, t) = cTw(x, t)4/3

and hence the slope of the partial derivative @q(x, t)/@Tw(x,

t) = 4
3cTw(x, t)1/3 goes to infinity as Tw(x, t)! 0 from above.

Thus, @q(x, t)/@Tw(x, t) is not Lipschitz continuous, and

consequently, there exists no K 2 [1,1) such that Eq. (6b) is

satisfied.

Therefore, we developed BuildOpt, a new detailed

building energy and daylighting simulation program. A

detailed description and validation of BuildOpt can be found

in [26]. BuildOpt satisfies Assumptions 3.1, 3.2 and 3.4. In

BuildOpt, the error of the approximate solutions can be

controlled so that f*(e, �)! f(�) uniformly on bounded sets,

as e ! 0, where f(�) is a once continuously differentiable

function.

4.2. BuildOpt building simulation program

BuildOpt uses a DAE system as defined by (3) that

satisfies Assumptions 3.1 and 3.2, and it uses the DAE solver

DASPK [5] to compute approximate solutions of (3). The

DASPK solver uses a variable time-step, variable order

Backward-Differentiation Formula [4,11].

To solve the DAE system (3) using DASPK, it is written

in the residual form:

Gðt; nðx; tÞ; ṅðx; tÞÞ¼
żðx; tÞ � hðx; zðx; tÞ;m�ðx; zÞÞ
gðx; zðx; tÞ;m�ðx; zÞÞ

� �
¼ 0;

(12)

where nðx; tÞ , ðzðx; tÞ;m�ðx; zÞÞT 2Rmþl is the vector of

differential variables z(x, t) and of algebraic variables

m*(x, z), which is the solution of (3c). Given initial values

of the differential variables z(x, 0), DASPK computes

consistent initial conditions żðx; 0Þ and m*(x, z(x, 0)), or

conversely, given ṅðx; 0Þ, it computes consistent values
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forn(x, 0) (see [6]).3 At each time step t 2 [0,1], DASPK

passes to BuildOpt a t̂> t; a n̂ðx; t̂Þ and a ˆ̇nðx; t̂Þ, where ˆ̇nðx; t̂Þ
is approximated by backward differences4 and BuildOpt

returns to DASPK the residual vector Gðt̂; n̂ðx; t̂Þ;
ˆ̇nðx; t̂ÞÞ 2Rmþl. This process is repeated iteratively until

all convergence tests in DASPK are satisfied. See [4] for

a more detailed description of DASPK. Our simulation

model is too big to obtain an analytical expression for the

iteration matrices Gvð�; �; �Þ and Gṅð�; �; �Þ used by DASPK.

Hence, we configured DASPK so that it approximates the

iteration matrices using finite differences. The linear system

of equations that arises in the Newton iterations is solved

using a direct method rather than Krylov iterations.5

The simulation code that we developed to evaluate

Gð�; �; �Þ consists of 30,000 lines or 1.2 MB of C/C++ code.

To test the feasibility of our adaptive precision optimization

algorithms for solving detailed building optimization

problems, we implemented models that are as detailed as

the models used in commercial simulation programs.6 For

example, the diffuse solar irradiation is computed using

Perez’ model [19,18] and the radiation temperature of a

cloudy sky is computed using Martin–Berdahl’s model [17].

To compute the heat conduction in opaque materials, with

possibly composite layers, we use the Galerkin method

[23,8] for the spatial discretization, and integrate the

spatially discretized equation with respect to time in

DASPK, coupled to all other equations. The short-wave

radiation through multi-pane windows is computed using a

model similar to the one used in the Window 4 program [9].

The daylight illuminance is computed with a model based on

view-factors that is similar to the model in the DeLight

program of Vartiainen [24].

BuildOpt also differs from other building simulation

programs in that it uses various smoothing methods to make

the model equations, the table look-ups (used in Perez’

model), and the weather data interpolations Lipschitz

continuously differentiable as required by Assumption

3.2. Hence, G(�, �, �) is smooth, which allows using a

DAE solver like DASPK that makes it possible to control the

error of the approximating cost functions.

The thermal simulation model is validated using the

ANSI/ASHRAE Standard test procedure 140–2001 [2], and

the daylighting simulation is validated using benchmark

tests [16,10] produced in the Task 21 of the International

Energy Agency (IEA) Solar Heating & Cooling Program.

The results of BuildOpt show good agreement with the

results of the other validated programs.
3 We say that initial conditions n(x, 0) and ṅðx; 0Þ are consistent if

Gð0; nðx; 0Þ; ṅðx; 0ÞÞ ¼ 0.
4 E.g., if the Implicit Euler method is used, then ˆ̇nðx; t̂Þ is replaced by

ðn̂ðx; t̂Þ � n̂ðx; t̂� dÞÞ=d, where d2R is the integration time step.
5 Using Krylov iterations may reduce computation time to solve the

linear system of equations, but we did not implement this feature in

BuildOpt.
6 We implemented, however, only the models that we needed for our

numerical experiments.
5. Optimization algorithm

We will now present our adaptive precision GPS

algorithms that we developed to solve problem (1). The

difference between our adaptive precision GPS algorithms

and fixed precision GPS algorithms, such as the ones in [3],

is that our algorithms have a test that controls the precision

of the approximating cost functions. The test causes the

optimization algorithms to use coarse approximations to the

cost function in the early iterations and to progressively

increase the precision of the approximating cost functions as

the sequence of iterates approaches a stationary point.

Another difference between the GPS algorithms presented

here and the ones in [3] and [22] is that the algorithms

presented here can be parametrized so that they only accept

iterates that reduce the cost sufficiently. A sufficient

decrease condition in conjunction with pattern search

algorithms has also been used by others, see for example

the review [15].

We will first explain the Coordinate Search algorithm

with fixed precision cost function evaluations, and then

explain our precision control algorithm. We selected the

Coordinate Search algorithm because it is the simplest

member of the family of GPS algorithms and illustrates best

how the precision control can be implemented. In [22], we

show a generic model GPS algorithm and the implementa-

tion of the Hooke–Jeeves algorithm. For k2N let xk 2Rn

denote the current iterate, let Dk 2Qþ be a positive

number, called the mesh size parameter, and let

Lk , fxk �Dkeiji2f1; . . . ; ngg\X. If there exists a point

x0 2 Lk that satisfies f*(e,x0) � f*(e,xk) < 0, then our fixed

precision Coordinate Search algorithm sets xk+1 = x0,
Dk+1 = Dk and replaces k by k + 1. Otherwise, it sets

xk+1 = xk, Dk+1 = Dk/2 and replaces k by k + 1.

We will now explain our precision control scheme. Let

’ : R
q
þ!Rþ be as in Assumption 3.4 and let z � 0 be a

constant. Let r : N!R
q
þ, with ’ � r : N!Rþ strictly

monotone decreasing, be a function that is used to assign the

precision parameter of the DAE solver, and let a 2 (0, 1) be a

constant. At the beginning of the optimization, we initialize

a counter N = 1 and we set e = r(N). The iterations are as

follows. If there exists an x0 2Lk that satisfies f*(e, x0) � f*(e,

xk) < �z’(e), we set, as in the fixed precision algorithm,

xk+1 = x0, Dk+1 = Dk and replace k by k + 1. Otherwise, we

replace N by N + 1 and use tighter precision e = r(N). If

’(e)a/Dk < Dk (for the new e), we decrease the mesh size

parameter by setting Dk+1 = Dk/2
m, where

m , arg minfm2Nj’ðeÞa�ðDk=2mÞ2g. If ’(e)a/Dk � Dk

(for the new e), we set Dk+1 = Dk. Thus, we decrease

the mesh size parameter only after we sufficiently

decreased the error of the approximating cost function,

and a 2 (0, 1) is used to control how fast the mesh

size parameter is decreased. If N is equal to a user-

specified limit N� 2N the search stops. Hence, for the last

iterations, the precision parameter of the DAE solver is

e* = r(N*).
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The above precision control scheme is different from the

one that theauthorspresent in [22,27]. In [22,27],onlyasimple

decrease incost is required foran iterate tobe accepted, and the

precision control scheme decreases Dk and e simultaneously

whenever f*(e, x0) � f*(e, xk) for all x0 2 Lk. However, the

algorithm in [22,27], when applied to the building design

optimization problems that we will present in this paper,

searched with a constant e for many iterations without

significantly reducing the cost, andDk was decreased too fast.

Thus, to increase the precision faster, we added a sufficient

decrease condition, and to prevent Dk from becoming too

small in early iterations, we increase first the precision of the

approximating cost functions, and decrease Dk only after the

precision of the approximating cost functions has been

sufficiently increased. This yields the following algorithm.

Algorithm 5.1.
Data
 Parameters a 2 (0, 1) and z � 0;
Initial iterate x0 2 X;
Initial mesh size parameter D0 2Qþ.
Maps
 Function ’ : R
q
þ!Rþ as in Assumption 3.4;
Function r : N!R
q
þ (to assign e),

such that the composition ’ � r : N!Rþ
is strictly monotone decreasing.
Step 0
 Set k = 0, N = 1, e = r(N).
Step 1
 Search
For i2{1, . . ., n},
Set x0 = xk + Dkei.
If f*(e, x0) � f*(e, xk) < �z’(e),
go to Step 3.
Set x0 = xk � Dkei.
If f*(e, x0) � f*(e, xk) < �z’(e),
go to Step 3.
end for.
Step 2
 No sufficient cost reduction
Replace N by N + 1 and set e = r(N).
If ’(e)a/Dk < Dk,
set Dk+1 = Dk/2
m, with m , arg minfm2Nj’ðeÞa

�ðDk=2mÞ2g.

else
set Dk+1 = Dk.
Set xk+1 = xk, and go to Step 4.
Step 3
 Cost sufficiently reduced
Set xk+1 = x0, Dk+1 = Dk, do not change N,

and go to Step 4.
Step 4
 Replace k by k + 1, and go to Step 1.
6. Convergence results
6.1. Unconstrained minimization

We will now establish the convergence properties of

Algorithm 5.1 on unconstrained minimization problems,
i.e., for X ¼ Rn. Box-constrained problems are discussed in

Section 6.2.

First, we note that all iterates constructed by Algorithm

5.1 belong to the grid

Mk , fx0 þDkmjm2Zng: (13)
The following obvious result will be used to show that Dk!
0 as k ! 1.

Proposition 6.1. Any bounded subset of a mesh Mkcontains

only a finite number of mesh points.

Proposition 6.2. Suppose that Assumption 3.6 is satisfied

and let fDkg1k¼0�Qþbe the sequence of mesh size para-

meters constructed by Algorithm 5.1. Then, lim infk!1
Dk ¼ 0.

Proof. Suppose lim infk!1Dk 6¼ 0. Then, Step 2 in Algo-

rithm 5.1 can only be executed for a finite number of

iterations because in Step 2, N is replaced by N + 1, from

which follows that ’(r(N))a! 0, as N!1, and hence Dk

! 0, as k ! 1. Thus, there exists an N� 2N and a

corresponding k� 2N such that N � N�;Dk ¼ Dk� and

e* = r(N*) for all k � k*, and the finest possible mesh is

Mk� , fx0 þDk�mjm2Zng.
By Assumption 3.6, there exists a compact set C, such

that Lf �ðe0;x0Þðf
�ðe; �ÞÞ �C, for all e2R

q
þ, with

e � e0 = r(1). Hence, it follows from Proposition 6.1 that

Mk� \Lf �ðe0;x0Þðf
�ðe; �ÞÞ contains only a finite number of

mesh points for all e � e0. Thus, at least one point in Mk�

must belong to the sequence fxkg1k¼0 infinitely many times.

Hence, the sequence ff �ðe�; xkÞg1k¼k� cannot satisfy f*(e*,

xk+1) � f*(e*, xk) < �z’(e*) for all k � k*, which contradicts

the constructions in Algorithm 5.1. &

Having shown that lim infk!1Dk ¼ 0, we can introduce

the notion of a refining subsequence as used by Audet and

Dennis [3].

Definition 6.3 (Refining subsequence). Consider a

sequence fxkg1k¼0 constructed by Algorithm 5.1. We will

say that the subsequence fxkgk2K is the refining subse-

quence, if Dk+1 < Dk for all k 2 K, and Dk+1 = Dk for all

k =2 K.

We now state that GPS algorithms with adaptive precision

function evaluations construct sequences of iterates with

stationary accumulation points.

Theorem 6.4 (Convergence to a stationary point).
Suppose that Assumptions 3.4 and 3.6 are satisfied.

Let x� 2Rn be an accumulation point of the refining

subsequence {xk}k2K constructed by Algorithm 5.1.

Then,

rf ðx�Þ ¼ 0: (14)
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Proof. Let {xk}k2K be the refining subsequence and, with-
K �
out loss of generality, suppose that xk! x . By Assump-

tion 3.6, there exists a compact set C such that

Lf �ðe0;x0Þðf
�ðe; �ÞÞ �C, for all e2R

q
þ, with e � e0 = r(1).

Therefore, by Assumption 3.4, there exist an eL 2R
q
þ and

a scalar KL 2 (0,1) such that, for all x 2 C and for all

e2R
q
þ, with e � eL, we have jf*(e, x) � f(x)j � KL’(e).

Next, pick an arbitrary h 2 {�e1, +e1,. . ., �en, +en}.

Because f(�) is continuously differentiable, it follows from

the Mean Value Theorem that for all k 2 K, there exists a

corresponding s0k 2 ð0; 1Þ such that

f ðxk þDkhÞ � f ðxkÞ ¼ rf ðxk þ s0kDkhÞ;Dkh
� �

¼ Dkdf ðxk þ s0kDkh; hÞ; (15)

where df(�; �) denotes the directional derivative [21]. Simi-

larly, there exists an s00k 2 ð0; 1Þ such that

f ðxk �DkhÞ � f ðxkÞ ¼ �Dkdf ðxk � s00kDkh; hÞ: (16)

Because f*(e, xk + Dkh) � f*(e, xk) � �z’(e) for all k 2 K, it

follows from (15) that for all k 2 K,

df ðxk þ s0kDkh; hÞ ¼ f ðxk þDkhÞ � f ðxkÞ
Dk

� f �ðe; xk þDkhÞ � f �ðe; xkÞ
Dk

� 2KL
’ðeÞ
Dk

� � z
’ðeÞ
Dk
�2KL

’ðeÞ
Dk

¼ �ðz þ 2KLÞ
’ðeÞ
Dk

: (17)

It follows similarly from (16) that for all k 2 K,

�df ðxk � s00kDkh; hÞ ¼ f ðxk �DkhÞ � f ðxkÞ
Dk

� f �ðe; xk �DkhÞ � f �ðe; xkÞ
Dk

� 2KL
’ðeÞ
Dk

� � z
’ðeÞ
Dk
�2KL

’ðeÞ
Dk

¼ �ðz þ 2KLÞ
’ðeÞ
Dk

: (18)

Since by Proposition 6.2, Dk!K0, it follows from the

constructions in Algorithm 5.1 that ’ðeÞ=Dk!K0. Hence,

it follows from (17) that df ðxk þ s0kDkh; hÞ� 0 and from

(18) that df ðxk � s00kDkh; hÞ � 0, for all k 2 K. Because

ðxk þ s0kDkhÞ!Kx� and ðxk � s00kDkhÞ!Kx�, it follows

from the continuity of 5f(�) that df(x*; h) = 0. Since

h 2 {�e1, +e1, . . ., �en, +en} is arbitrary, we have

5f(x*) = 0. &
6.2. Box-constrained minimization

We will now extend the convergence results to box-

constrained problems, i.e., for X as defined in (1b). The case

with linear constraints is discussed in [3,22].

First, we introduce the notion of a tangent cone and a

normal cone, which are defined as follows:
Definition 6.5 (Tangent and normal cone).

(1). Let X�Rn be defined as in (1b). Then, we define the
tangent cone to X at a point x* 2 X by

TXðx�Þ , fmðx� x�Þjm� 0; x2Xg: (19a)

Let TX(x*) be as above. Then, we define the normal
(2).
cone to X at x* 2 X by

NXðx�Þ , fn2Rnj 8 t2TXðx�Þ; n; th i � 0g: (19b)
We have the following theorem.

Theorem 6.6 (Convergence to a feasible stationary
point).
Suppose that Assumptions 3.4 and 3.6 are satisfied. Let

x* 2 X be an accumulation point of the refining sub-

sequence{xk}k2Kconstructed by Algorithm 5.1 in solving

problem (1). Then,

rf ðx�Þ; th i� 0; 8 t2TXðx�Þ; (20a)

and

�rf ðx�Þ 2NXðx�Þ: (20b)

Proof. If x* is in the interior of X, then the result reduces to

Theorem 6.4.

Let x* 2 @X. There exists a set of search directions

Hðx�Þ� f�e1;þe1; . . . ;�en;þeng such that TXðx�Þ ¼
f
PcardHðxÞ

i¼1 aihijhi 2Hðx�Þ;ai� 0; i2f1;. . . ; card Hðx�Þgg.
Because xk!Kx�, it follows from (17) that there exists an

infinite subset K0 � K for which df ðxk þDks0kh; hÞ� 0, with

s0k 2 ð0; 1Þ, for all k 2 K0 and for all h2Hðx�Þ. Thus, it

follows from the continuity of 5f(�) that h5f(x*),ti � 0, for

all t 2 TX(x*). It follows directly that h�5f(x*),ti � 0, for

all t 2 TX(x*), which shows that �5f(x*) 2 NX(x*). &
7. Numerical experiments

We will now describe the performance of our precision

control algorithm used in conjunction with the Hooke–

Jeeves optimization algorithm. The optimizations were done

using the GenOpt(R) 2.0.0 optimization program [25].

We minimized the annual source energy consumption of

the office rooms shown in Fig. 1. Three thermal zones were

simulated: A north facing room, a south facing room and a

hallway between the two rooms. We assumed that all rooms

that are adjacent to the three rooms have the same

temperatures and radiative heat gains as the simulated

rooms.

The building has a high thermal mass. The walls are made

of concrete and have 20 cm exterior insulation. The windows

are double-pane windows and have an exterior shading

device with a solar and visible transmittance of 30% and a

reflectance of 50%. The exterior shading device is activated

if the total solar radiation on the window exceeds a setpoint.



M. Wetter, E. Polak / Energy and Buildings 37 (2005) 603–612610

Fig. 1. Thermal zones used for computing the buildings annual source

energy consumption.

Table 1

Normalized computation time required to solve the optimization problem

with Algorithm 5.1

z = 0 z = 10�8 z = 10�6 z = 10�4 z = 10�2 Dk�

a = 1/7 0.27 0.27 0.27 0.28 0.55 1/2

a = 1/6 0.33 0.33 0.33 0.31 0.61 1/4

a = 1/4 0.35 0.35 0.35 0.31 0.74 1/4

a = 1/3 0.55 0.55 0.55 0.60 1.21 1/8

The last column shows for each a the smallest Dk used in the search.
The south window has a shading overhang. The north and

south zones have daylighting controls with an illuminance

setpoint of 500 lux 3 m from the window. We used TMY2

weather data for Houston Intercontinental, TX.

The annual source energy consumption is

f ðxÞ , QhðxÞ
hh

þQcðxÞ
hc

þ3ElðxÞ; (21)

where Qh(�) and Qc(�) are the zone’s annual heating and

cooling load, respectively, El(�) is the zone’s electricity

consumption for lighting, and the efficiencies hh = 0.44

and hc = 0.77 are plant efficiencies that relate the zone load

to the primary energy consumption for heating and cooling

generation, including electricity consumption for fans and

pumps [13]. The electricity consumption is multiplied by

three to convert site electricity to source fuel energy con-

sumption.

There are five independent variables, normalized so that

0 � xi � 1 for all i 2 {1, . . ., 5}. The components x1 and x2

linearly scale the width of the north and south facing

window, respectively, from 4 m to 7.8 m. The component x3

linearly scales the width of the window overhang from 0.1 m

to 1.0 m. The components x4 and x5 linearly scale the

shading control setpoints. For the north window, the setpoint

is varied from 100 W/m2 to 200 W/m2 and for the south

window it is varied from 100 W/m2 to 600 W/m2. For the

initial iterate, we set xi
0 ¼ 0:5 for all i 2 {1, . . ., 5}.

We solved the optimization problem with fixed precision

and with adaptive precision cost function evaluations. In the

optimization with fixed precision cost function evaluations,

we set e = 10�5 and we allowed the mesh size parameter Dk

to be decreased four times before the optimization stops.

For the optimization with adaptive precision cost

function evaluations, we defined r : N!Rþ as r(N) =

10�N and increased the precision four times. Thus,

e = r(1) = 10�1 for the first iterations, and e = r(5) = 10�5

for the last iterations. Present day DAE solvers, including

DASPK, typically control the local error at each time step

and do not even attempt to control the global error directly.

We assumed that the global error of the approximate

solutions z*(e, �, 1) is one order of magnitude greater than the

local error. Hence, we set ’(e) = 10e. (Alternatively, we

could have absorbed the factor 10 in the constant KS in (7).)
In Table 1, we show the values that we selected for the

algorithm parameters a 2 (0, 1) and z � 0, the correspond-

ing computation time and in the last column the smallest

mesh size parameter Dk�. A computation time of 1

corresponds to 5.5 days of computing on a 2.2 GHz

AMD processor running Linux with the 2.4.18–3 kernel.

Note that in Algorithm 5.1, the parameter a 2 (0, 1) is

only used to adjust the mesh size parameter Dk so that

’ðeÞa�D2
k . Since ’(�) depends only on N, it is possible to

compute for each N 2N the corresponding mesh size

parameter. Such a computation shows that the sequence of

mesh size parameters Dk, and hence the sequence of iterates

xk, are identical for all a � 1/7, with a > 0, and fixed z.
Thus, a further reduction of a does not reduce the

computation time.

For a � 1/4, with z 2 {0, 10�8, 10�6, 10�4}, our

precision control algorithm reduces the computation time

up to a factor of four. For our optimization problem, a = 1/3

and z � 10�2 turn out to be too big, and imposing a sufficient

decrease condition by setting z > 0 does not reduce the

computation time. All optimization runs converged to

x* = (1, 1, 1, 0.19, 0.048)T and reduced the source energy

consumption by 4.6% or 9.4 kWh/(m2a). The 4.6%

reduction is small, but not representative since considerably

higher reductions have been reported in other building

design optimizations, see for example [1,29]. How big the

reduction is depends on how good the initial design is and

how sensitive the energy consumption is with respect to

changes in the design parameter, which differs from one

situation to another. Furthermore, the purpose of this paper is

to present a new technique for building design optimization,

rather than to assess the typical savings that can be obtained

by optimization.

We will now describe how the optimizations with fixed

and adaptive precision cost function evaluations, with

z = 10�4 and a = 1/6, converged to a minimum. Let the

normalized distance of the kth iterate xk 2Rn to the

minimizer x� , arg minx2X f ðxÞ be defined as dðxkÞ ,
kxk � x�k=kx0 � x�k, where x0 2Rn is the initial iterate.

Fig. 2 shows the cost function value and the distance to the

minimizer as a function of the computation time. The

horizontal axis is in logarithmic scale for better display of

the early iterations. Below the axis we show when precision

was increased. The different precision values are indicated

by em, m 2 {0, 1, 2, 3, 4}, where em = 10�(m+1). In the left-

hand side graph, we can see that even for such coarse a
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Fig. 2. Normalized cost function value (left-hand side graph) and distance

to the minimizer (right-hand side graph) as a function of the normalized

CPU time in logarithmic scale. Below the graphs we show the intervals for

which the precision e has been kept constant. For the adaptive precision

optimization, we used z = 10�4 and a = 1/6. For better display of the early

iterations, the time scale is in logarithmic scale.

Fig. 3. Relative change of cost along the coordinate direction e5 for different

precision parameters e. For better visibility of the data series, the support

points are connected by lines. In brackets, we show the computation time

required for one cost function evaluation with the corresponding precision

parameter e. The component x5 2 [0, 1] scales the setpoint of the shading

device for the south facing window.
precision as e = l0�1, the approximating cost function

f*(10�1, �) allowed a substantial decrease in cost during the

first 0.2% of the computation time.

In Fig. 3 we show how the functions ff �ðe; �Þge2R
q
þ

converge to a smooth function. The figure shows the relative

change of the cost function value d(e, x5), defined as

dðe; x5Þ , f �ðe; x� þ ðx5 � ðx�Þ5Þe5Þ � f �ð10�5; x�Þ
f �ð10�5; x�Þ ; (22)

where x� , arg minx2X f ðxÞ. For the subspace spanned by

the coordinate vector e5, the figure shows how the disconti-

nuities in f*(e, �) vanish as jjejj ! 0, that f*(e, �) converges to a

smooth function, and how much the computation time for

one cost function evaluation increases as e is decreased. The

difference between the functions f*(10�4, �) and f*(10�5, �) is

too small to be visible in Fig. 3.
8. Conclusion

Building energy and daylighting simulation programs

construct discontinuous approximations to a usually con-

tinuously differentiable cost function. This can cause
optimization methods to fail far from an optimal solution.

In such cases, the economic potential that optimization

offers is not realized. To eliminate this problem, one needs to

use high precision approximations to the cost function,

which may cause the computation time to be prohibitively

long if used for all iterations.

We have shown that detailed thermal building and

daylighting simulation programs can be written so that

they compute for a large class of optimization problems

approximating cost functions that converge to a once conti-

nuously differentiable function as precision is increased.

We have presented a precision control algorithm that

uses low-cost, coarse precision approximations to the cost

function when far from a solution, with the precision

progressively increased as a solution is approached. We have

proven that our optimization algorithm constructs a

sequence of iterates with stationary accumulation point

even though the cost function is approximated by a family of

discontinuous functions.

In the presented numerical experiments, our precision

control scheme reduces the computation time up to a factor

of four compared to the standard Hooke–Jeeves algorithm.
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